

Self-Optimizing Control of a Continuous-Flow Pharmaceutical Manufacturing Plant

David Pérez Piñeiro ¹ Anastasia Nikolakopoulou ² Johannes Jäschke ¹ Richard D. Braatz ²

¹Norwegian University of Science and Technology

²Massachusetts Institute of Technology

21st IFAC World Congress Berlin, July 11-17, 2020

• • = • • = •

1 Towards Continuous-Flow Pharmaceutical Manufacturing

- 2 Self-Optimizing Control
- Application: Continuous-Flow Synthesis of Atropine

э

(日) (四) (日) (日) (日)

Outline

1 Towards Continuous-Flow Pharmaceutical Manufacturing

2 Self-Optimizing Control

3 Application: Continuous-Flow Synthesis of Atropine

4 Conclusions

э

(日) (四) (日) (日) (日)

Pharmaceutical Manufacturing is Moving Towards Continuous Processing

Pérez Piñeiro et al. (NTNU-MIT)

IFAC World Congress 2020

Adamo, A., Beingessner, R. L., Behnam, M., Chen, J., Jamison, T. F., Jensen, K. F., Monbaliu, J.-C. M., Myerson, A. S., Revalor, E. M., Snead, D. R., Et al. (2016). On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. *Science*, *352*(6281), 61–67.

Pharmaceutical Manufacturing is Moving Towards Continuous Processing

- Advantages of continuous manufacturing:
 - Lower drug production costs
 - Waste reduction
 - Fewer supply chain disruptions

Pérez Piñeiro et al. (NTNU-MIT)

IFAC World Congress 2020

July 11-17, 2020 2 / 23

Adamo, A., Beingessner, R. L., Behnam, M., Chen, J., Jamison, T. F., Jensen, K. F., Monbaliu, J.-C. M., Myerson, A. S., Revalor, E. M., Snead, D. R., Et al. (2016). On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. *Science*, 352(6281), 61–67.

Pharmaceutical Manufacturing is Moving Towards Continuous Processing

- Advantages of continuous manufacturing:
 - Lower drug production costs
 - Waste reduction
 - Fewer supply chain disruptions
- Advantages of on-demand, compact, modular systems:
 - Robust to sudden changes in demand
 - Pharmaceuticals for small populations

Pérez Piñeiro et al. (NTNU-MIT)

IFAC World Congress 2020

July 11-17, 2020 2 / 23

Adamo, A., Beingessner, R. L., Behnam, M., Chen, J., Jamison, T. F., Jensen, K. F., Monbaliu, J.-C. M., Myerson, A. S., Revalor, E. M., Snead, D. R., Et al. (2016). On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. *Science*, *352*(6281), 61–67.

3 Application: Continuous-Flow Synthesis of Atropine

4 Conclusions

э

(日) (四) (日) (日) (日)

Definition

Self-optimizing control is when we can achieve an acceptable loss with constant setpoint values for the controlled variables (without the need to reoptimize when disturbances occur)^a.

(日) (四) (日) (日) (日)

^aSkogestad, S. (2000). Plantwide control: The search for the self-optimizing control structure. *Journal of Process Control.*

Definition

Self-optimizing control is when we can achieve an acceptable loss with constant setpoint values for the controlled variables (without the need to reoptimize when disturbances occur)^a.

^aSkogestad, S. (2000). Plantwide control: The search for the self-optimizing control structure. *Journal of Process Control.*

• Control architecture parameterized by H and cs

• Equivalent control architecture parameterized by \tilde{H}

 $\tilde{H} = \begin{bmatrix} -c_s & H \end{bmatrix}$ $\tilde{y} = \begin{bmatrix} 1 \\ v \end{bmatrix}$

Pérez Piñeiro et al. (NTNU-MIT)

IFAC World Congress 2020

July 11-17, 2020 4 / 23

• Equivalent control architecture parameterized by \tilde{H}

• Self-optimizing control problem: Find the optimal \tilde{H}

IFAC World Congress 2020

Given a steady-state cost function J, disturbance d, sensor noise n, and combination matrix H, we define:

(日) (四) (日) (日) (日)

Given a steady-state cost function J, disturbance d, sensor noise n, and combination matrix H, we define:

• Loss:

$$L(n,d,H) = J(n,d,H) - J^*(d)$$

э

(日) (四) (日) (日) (日)

Given a steady-state cost function J, disturbance d, sensor noise n, and combination matrix H, we define:

 $L(n,d,H) = J(n,d,H) - J^*(d)$

• Average loss:

• Loss:

 $L_{av}(H) = \mathbb{E}[L(n, d, H)]$

Given a steady-state cost function J, disturbance d, sensor noise n, and combination matrix H, we define:

$$L(n,d,H) = J(n,d,H) - J^*(d)$$

• Average loss:

• Loss:

$$L_{av}(H) = \mathbb{E}[L(n, d, H)]$$

The combination matrix that minimizes the average loss is the solution to

 $\begin{array}{ll} \min_{H} & L_{av}(H) \\ \text{s.t.} & y = f(u, d) \\ & H(y + n) = 0 \end{array} \quad \text{Process model} \qquad \Rightarrow \text{Intractable} \\ \hline \\ & H(y + n) = 0 \end{array} \quad \text{Feedback control effects} \end{array}$

Approximate methods

Local methods

- Null-space method (Alstad and Skogestad, 2007)
- Extended Null-space method (Alstad et al., 2009)
- Minimum Loss method (Alstad et al., 2009)

Global methods

- Polynomial zero loss-method (Jäschke and Skogestad, 2012)
- Regression approach (Ye et al., 2013)
- Controlled variable adaptation (Ye et al., 2014)
- Global approximation of controlled variables (Ye et al., 2015)

< □ > < □ > < □ > < □ > < □ > < □ >

• Key simplification: Second order Taylor expansion of L around c

$$L = e_c^{\top} J_{cc} e_c, \qquad J_{cc} = (HG_y)^{\top} J_{uu} (HG_y)$$

• Key simplification: Second order Taylor expansion of L around c

$$L = e_c^{\top} J_{cc} e_c, \qquad J_{cc} = (HG_y)^{\top} J_{uu} (HG_y)$$

• Separate the loss contribution due to disturbances and due to noise:

$$L_{av} = \mathbb{E}[L_d] + \mathbb{E}[L_n] \qquad \qquad L_d^{(i)} = \frac{1}{2} y^{*(i)\top} H^{\top} J_{cc}^{(i)} H y^{*(i)} \\ \approx \frac{1}{N} \sum_{i=1}^{N} [L_d^{(i)} + L_n^{(i)}] \qquad \qquad L_n^{(i)} = \frac{1}{2} \text{trace}(W^2 H^{\top} J_{cc}^{(i)} H) \\ W^2 = \mathbb{E}(nn^{\top})$$

н

• Simplified optimization problem:

$$\begin{split} & \underset{H}{\min} \quad \frac{1}{N} \sum_{i=1}^{N} [L_d^{(i)} + L_n^{(i)}], \quad i = 1, \dots, N \\ & \text{s.t.} \quad HG_y = J_{uu}^{1/2} \end{split} \Rightarrow \\ \end{split}$$

3

(日) (四) (日) (日) (日)

• Simplified optimization problem:

$$\min_{H} \quad \frac{1}{N} \sum_{i=1}^{N} [L_{d}^{(i)} + L_{n}^{(i)}], \quad i = 1, \dots, N$$
s.t.
$$HG_{y} = J_{uu}^{1/2}$$

• Additional assumption: Constant J_{cc}

• Simplified optimization problem:

$$\begin{array}{ll} \min_{H} & \frac{1}{N} \sum_{i=1}^{N} [L_{d}^{(i)} + L_{n}^{(i)}], \quad i = 1, \dots, N \\ \text{s.t.} & HG_{y} = J_{uu}^{1/2} \end{array} \Rightarrow \text{Nonconvex} \end{array}$$

- Additional assumption: Constant J_{cc}
- Simplified convex optimization problem:

$$\min_{H} \quad \frac{1}{2} \| \tilde{Y} H^{\top} \|_{F}^{2} \qquad \qquad \tilde{Y} = \begin{bmatrix} \frac{1}{\sqrt{N}} Y \\ W \end{bmatrix}, \quad Y = \begin{bmatrix} (y_{1}^{\text{opt}})^{\top} \\ \vdots \\ (y_{N}^{\text{opt}})^{\top} \end{bmatrix}$$
s.t. $HG_{y} = J_{uu}^{1/2}$

• Simplified optimization problem:

$$\begin{array}{ll} \min_{H} & \frac{1}{N} \sum_{i=1}^{N} [L_{d}^{(i)} + L_{n}^{(i)}], \quad i = 1, \dots, N \\ \text{s.t.} & HG_{y} = J_{uu}^{1/2} \end{array} \Rightarrow \text{Nonconvex} \end{array}$$

- Additional assumption: Constant J_{cc}
- Simplified convex optimization problem:

$$\min_{H} \quad \frac{1}{2} \| \tilde{Y} H^{\top} \|_{F}^{2} \qquad \qquad \tilde{Y} = \begin{bmatrix} \frac{1}{\sqrt{N}} Y \\ W \end{bmatrix}, \quad Y = \begin{bmatrix} (y_{1}^{\text{opt}})^{\top} \\ \vdots \\ (y_{N}^{\text{opt}})^{\top} \end{bmatrix}$$
s.t. $HG_{y} = J_{uu}^{1/2}$

• Analytical solution: $H^{\top} = (\tilde{Y}^{\top} \tilde{Y})^{-1} G_y$

Selecting Subsets of Measurements

• Pareto Frontier

Number of measurements

Selecting Subsets of Measurements

Pareto Frontier

Number of measurements

- Two solution strategies:
 - Tailor-made branch and bound methods
 (Cap and Kaviwala, 2008)
 - (Cao and Kariwala, 2008)
 - MIQP formulation (Yelchuru and Skogestad, 2012)

July 11-17, 2020 9 / 23

Vectorization

$$\min_{H} \quad \frac{1}{2} \| \tilde{Y} H^{\top} \|_{F}^{2}$$
s.t.
$$HG_{y} = J_{uu}^{1/2}$$

$$H = \begin{bmatrix} h_{11} & \dots & h_{1n_y} \\ \vdots & \ddots & \vdots \\ h_{n_u 1} & \dots & h_{n_u n_y} \end{bmatrix}$$

Pérez Piñeiro et al. (NTNU-MIT)

IFAC World Congress 2020

July 11-17, 2020 10 / 23

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Vectorization

$$\begin{split} \min_{H} & \frac{1}{2} \| \tilde{Y} H^{\top} \|_{F}^{2} \\ \text{s.t.} & H G_{y} = J_{uu}^{1/2} \\ & \psi \\ & & \psi \\ \\ \min_{h_{\delta}} & h_{\delta}^{\top} Y_{\delta} h_{\delta} \\ \text{s.t.} & G_{\delta}^{y^{\top}} h_{\delta} = j_{\delta} \end{split} \qquad H = \begin{bmatrix} h_{11} & \dots & h_{1n_{y}} \\ \vdots & \ddots & \vdots \\ h_{nu1} & \dots & h_{nun_{y}} \end{bmatrix} \\ & \psi \\ & & \psi \\ & & \psi \\ & & & h_{\delta} = \begin{bmatrix} h_{11} & \dots & h_{nun_{y}} \end{bmatrix}^{\top} \\ \text{s.t.} & G_{\delta}^{y^{\top}} h_{\delta} = j_{\delta} \\ & & G_{\delta}^{y}, j_{\delta}, \text{ and } Y_{\delta} \text{ are obtained similarly} \end{split}$$

July 11-17, 2020 10 / 23

- 2

• MIQP formulation for selecting a subset of s measurements

 $\begin{array}{ll} \min_{h_{\delta},\sigma} & h_{\delta}^{\top} \, Y_{\delta} h_{\delta} \\ \text{s.t.} & G_{\delta}^{y \, \top} h_{\delta} = j_{\delta} \end{array}$

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

• MIQP formulation for selecting a subset of s measurements

$$\begin{array}{ll} \min_{h_{\delta},\sigma} & h_{\delta}^{\top} Y_{\delta} h_{\delta} \\ \text{s.t.} & G_{\delta}^{y^{\top}} h_{\delta} = j_{\delta} \\ & P\sigma = s \end{array}$$

12

(日) (四) (日) (日) (日)

• MIQP formulation for selecting a subset of s measurements

$$\begin{array}{ll} \min_{h_{\delta},\sigma} & h_{\delta}^{\top} \, Y_{\delta} h_{\delta} \\ \text{s.t.} & G_{\delta}^{y^{\top}} h_{\delta} = j_{\delta} \\ & P\sigma = s \\ & \sigma_1 = 1 \end{array}$$

12

(日) (四) (日) (日) (日)

• MIQP formulation for selecting a subset of s measurements

$$\begin{array}{ll} \min_{h_{\delta},\sigma} & h_{\delta}^{\top} Y_{\delta} h_{\delta} \\ \text{s.t.} & G_{\delta}^{y^{\top}} h_{\delta} = j_{\delta} \\ & P\sigma = s \\ & \sigma_1 = 1 \\ & -M\sigma_j \leq h_{ij} \leq M\sigma_j \quad \forall j \in \{1,\ldots,n_y\} \\ & \forall i \in \{1,\ldots,n_u\} \end{array}$$

イロト イポト イヨト イヨト 二日

• MIQP formulation for selecting a subset of s measurements

$$\begin{array}{ll} \min_{h_{\delta},\sigma} & h_{\delta}^{\top} Y_{\delta} h_{\delta} \\ \text{s.t.} & G_{\delta}^{y^{\top}} h_{\delta} = j_{\delta} \\ & P\sigma = s \\ & \sigma_1 = 1 \\ & -M\sigma_j \leq h_{ij} \leq M\sigma_j \quad \forall j \in \{1,\ldots,n_y\} \\ & \forall i \in \{1,\ldots,n_u\} \\ & h_{\delta} \in \mathbb{R} \\ & \sigma \in \{0,1\} \end{array}$$

<ロ> <四> <四> <四> <四> <四</p>

4 Conclusions

э

< □ > < 同 > < 回 > < 回 > < 回 >

Source: McGuff Medical Products

Source: Wikipedia

IFAC World Congress 2020

July 11-17, 2020 12 / 23

- 2

• Active pharmaceutical ingredient

A D N A B N A B N A B N

Source: McGuff Medical Products

Source: Wikipedia

3

Source: McGuff Medical Products

- Active pharmaceutical ingredient
- Identified as an essential medicine by the World Health Organization

Source: Wikipedia

э

- 4 回 ト 4 ヨ ト 4 ヨ ト

Source: McGuff Medical Products

Source: Wikipedia

- Active pharmaceutical ingredient
- Identified as an essential medicine by the World Health Organization
- Uses:
 - Nerve agent and pesticide poisonings
 - Slow heart rate conditions
 - Reduce saliva production during surgery

▲ □ ▶ ▲ □ ▶ ▲ □

Process Description

Process flowsheet¹²

²Nikolakopoulou, A., von Andrian, M., & Braatz, R. D. (2020). Fast model predictive control of startup of a compact modular reconfigurable system for continuous-flow pharmaceutical manufacturing [in-press]. In American control conf. in press.

Pérez Piñeiro et al. (NTNU-MIT)

¹Bédard, A.-C., Longstreet, A. R., Britton, J., Wang, Y., Moriguchi, H., Hicklin, R. W., Green, W. H., & Jamison, T. F. (2017). Minimizing e-factor in the continuous-flow synthesis of diazepam and atropine. *Bioorganic & medicinal chemistry*, 25(23), 6233–6241.

Process Description

Process flowsheet¹²

Reaction set

 $C_1 + C_3 \rightarrow C_4$ $C_4 + C_7 \rightarrow C_8 + C_{11} + C_{12}$ $C_5 + C_{11} \rightarrow C_9$ $C_5 + C_{11} \rightarrow C_8 + C_{10}$

Chemical species	Chemical formula	Notation
Tropine	C ₈ H ₁₅ NO	C1
Dimethylformamide	C ₃ H ₇ NO	C_2
Phenylacetylchloride	C ₈ H ₇ CIO	C3
Intermediate	C ₁₆ H ₂₁ O ₂ NHCI	C_4
Formaldehyde	CH ₂ O	C5
Methanol	CH₃OH	C_6
Sodium hydroxide	NaOH	C7
Water	H ₂ O	C_8
Atropine	C ₁₇ H ₂₃ NO ₃	C_9
Apoatropine	$C_{17}H_{21}NO_2$	C10
Tropine ester	$C_{16}H_{21}O_2N$	C11
Sodium chloride	NaCl	C12
Buffer	NH ₄ CI	C13
Toluene	C7H8	C14

¹Bédard, A.-C., Longstreet, A. R., Britton, J., Wang, Y., Moriguchi, H., Hicklin, R. W., Green, W. H., & Jamison, T. F. (2017). Minimizing e-factor in the continuous-flow synthesis of diazepam and atropine. *Bioorganic & medicinal chemistry*, 25(23), 6233–6241.

²Nikolakopoulou, A., von Andrian, M., & Braatz, R. D. (2020). Fast model predictive control of startup of a compact modular reconfigurable system for continuous-flow pharmaceutical manufacturing [in press]. American control conf. in press. Q. (

Pérez Piñeiro et al. (NTNU-MIT)

IFAC World Congress 2020

July 11-17, 2020 13 / 23

July 11-17, 2020 14 / 23

3

< □ > < 同 > < 回 > < 回 > < 回 >

 Concentrations of chemical species at the outlet of the reactors, in the liquid-liquid separator, and in the feed streams

July 11-17, 2020 14 / 23

- Concentrations of chemical species at the outlet of the reactors, in the liquid-liquid separator, and in the feed streams
- Temperatures in the reactors

- Concentrations of chemical species at the outlet of the reactors, in the liquid-liquid separator, and in the feed streams
- Temperatures in the reactors
- Volumetric flowrates in the feed streams

A total of 42 potential measurements

- Concentrations of chemical species at the outlet of the reactors, in the liquid-liquid separator, and in the feed streams
- Temperatures in the reactors
- Volumetric flowrates in the feed streams

Index	Measurement
1-2	Concentration of C_i at the outlet of TR1, $i = \{1, 3\}$
3-10	Concentration of C_i at the outlet of TR2, $i = \{1, 3, 5, 7, 9, 10, 11, 12\}$
11-18	Concentration of C_i at the outlet of TR3, $i = \{1, 3, 5, 7, 9, 10, 11, 12\}$
19-22	Concentration of C_i in LL (aqueous phase), $i = \{1, 7, 9, 12\}$
23-26	Concentration of C_i in LL (organic phase), $i = \{3, 5, 10, 11\}$
27-30	Concentration of C_i in the feed streams q_{1-4} , $i = \{1, 3, 5, 7\}$
31-33	Volume flowrates of TR1, TR2, and TR3
34-35	Volume flowrates of aqueous and organic phases in LL
36-39	Volume flowrates of feed streams q_{1-4}
40.40	Tomporatures of TP1 TP2 and TP2

July 11-17, 2020 15 / 23

æ

A D N A B N A B N A B N

• The manipulated variables are the volume flowrates of the feed streams containing reactants: $u = (q_1, q_2, q_3, q_4)$

- The manipulated variables are the volume flowrates of the feed streams containing reactants: $u = (q_1, q_2, q_3, q_4)$
- Feed streams containing solvents are assumed constant: $q_5 = 0.2 \text{ mL/min}$ and $q_6 = 0.5 \text{ mL/min}$

- The manipulated variables are the volume flowrates of the feed streams containing reactants: $u = (q_1, q_2, q_3, q_4)$
- Feed streams containing solvents are assumed constant: $q_5 = 0.2 \text{ mL/min}$ and $q_6 = 0.5 \text{ mL/min}$
- Constraints: $0 \le q_i \le 4 \text{ mL/min for } i = \{1, 2, 3, 4\}$

Pérez Piñeiro et al. (NTNU-MIT)

July 11-17, 2020 15 / 23

Uncertainty

• Disturbances $d \sim \mathcal{N}(\mu, \sigma^2)$

- Separation coefficient of atropine D_{C9}
- Pre-exponential factors k_i
- Activation energies *E_{Ai}*
- Molarity of components C₁ and C₇ in the feed streams
- Reactor temperatures T_i

Disturbance	Unit	μ	σ
M_{C_1}	mol/L	2	0.01μ
M_{C_7}	mol/L	4	0.01μ
T_1	К	373.15	1
T_2	К	373.15	1
<i>T</i> ₃	К	323.15	1
k_1	$mol/(mL \cdot min)$	34206	0.05μ
k ₂	$mol/(mL \cdot min)$	10000	0.05μ
k3	$mol/(mL \cdot min)$	24	0.05μ
k4	$mol/(mL \cdot min)$	43599	0.05μ
E _{A1}	J/mol	1000	0.05μ
E _{A2}	J/mol	100	0.05μ
E _{A3}	J/mol	1819	0.05μ
E_{A4}	J/mol	26207	0.05μ
$\log(D_{C_0})$	-	-2	0.5

July 11-17, 2020 16 / 23

Uncertainty

• Disturbances $d \sim \mathcal{N}(\mu, \sigma^2)$

- Separation coefficient of atropine D_{C9}
- Pre-exponential factors k_i
- Activation energies *E_{Ai}*
- Molarity of components C₁ and C₇ in the feed streams
- Reactor temperatures T_i

• Sensor noise $n \sim \mathcal{N}(0, \sigma^2)$

- Volume flowrates:
 - $\sigma = 0.025q_{nom}$
- Concentrations:

 $\sigma = 0.025 C_{nom}$

• Temperatures: $\sigma = 1 \,\mathrm{K}$

Disturbance	Unit	μ	σ
M_{C_1}	mol/L	2	0.01μ
M_{C_7}	mol/L	4	0.01μ
T_1	К	373.15	1
T_2	К	373.15	1
T_3	К	323.15	1
k_1	$mol/(mL \cdot min)$	34206	0.05μ
k ₂	$mol/(mL \cdot min)$	10000	0.05μ
k3	$mol/(mL \cdot min)$	24	0.05μ
k_4	$mol/(mL \cdot min)$	43599	0.05μ
E_{A1}	J/mol	1000	0.05μ
E _{A2}	J/mol	100	0.05μ
E _{A3}	J/mol	1819	0.05μ
E_{A4}	J/mol	26207	0.05μ
$\log(D_{C_0})$	-	-2	0.5

July 11-17, 2020 16 / 23

• Minimize the E-factor, which is the mass of waste per mass of product

J = E-factor $= \frac{\text{mass of waste}}{\text{mass of atropine}}$

< E

Screening Self-Optimizing Variables

n_y	Measurement subset	$\bar{L}_{\mathrm{av}} \left(\times 10^{-3} \right)$
4	[13, 19, 20, 26]	14.427
	[3, 13, 20, 26]	14.456
	[11, 13, 20, 26]	14.457
5	[13, 17, 19, 20, 36]	12.990
	[11, 13, 17, 20, 36]	12.992
	[3, 13, 17, 20, 36]	12.994
6	[7, 13, 19, 20, 21, 26]	11.725
	[7, 11, 13, 20, 21, 26]	11.733
	[3, 7, 13, 20, 21, 26]	11.734
7	[7, 13, 19, 20, 21, 24, 26]	10.690
	[7, 11, 13, 20, 21, 24, 26]	10.696
	[3, 7, 13, 20, 21, 24, 26]	10.698
÷		:
42	all measurements	7.7056

Image: A math a math

∃ → July 11-17, 2020 18/23

э

Steady-State Validation Using the Nonlinear Model

ny	Measurement subset	$L_{\rm av} (imes 10^{-3})$
4	[13, 19, 20, 26]	45.428
5	[13, 17, 19, 20, 36]	43.177
6	7, 13, 19, 20, 21, 26]	26.753
7	7, 13, 19, 20, 21, 24, 26	25.654
8	[7, 13, 17, 19, 20, 21, 24, 36]	25.033
9	[7, 12, 13, 17, 20, 21, 23, 24, 36]	23.614
10	[7, 12, 13, 17, 20, 21, 22, 23, 24, 36]	22.717
÷	:	-
42	all measurements	20.889

IFAC World Congress 2020

July 11-17, 2020 19 / 23

Example: Control Architecture with 6 Measurements

$$H = \begin{bmatrix} -1.65 & -1.39 & 0.29 & -69.9 & 2.88 & 1.10 & 2.15 \\ -2.15 & -1.57 & 0.79 & -38.9 & 15.5 & 1.32 & 1.87 \\ -1.90 & -1.21 & 1.55 & -8.44 & 10.6 & 0.98 & 0.80 \\ -3.18 & -2.25 & 1.65 & -12.9 & 15.0 & 1.84 & 2.45 \end{bmatrix}$$

ny	Measurement subset	$L_{\rm av}$ (×10 ⁻³)
4	[13, 19, 20, 26]	45.428
5	[13, 17, 19, 20, 36]	43.177
6	[7, 13, 19, 20, 21, 26]	26.753
7	[7, 13, 19, 20, 21, 24, 26]	25.654
8	[7, 13, 17, 19, 20, 21, 24, 36]	25.033
9	[7, 12, 13, 17, 20, 21, 23, 24, 36]	23.614
10	[7, 12, 13, 17, 20, 21, 22, 23, 24, 36]	22.717
÷		:
42	all measurements	20.889

Pérez Piñeiro et al. (NTNU-MIT)

IFAC World Congress 2020

July 11-17, 2020

20 / 23

Dynamic Simulation

Pérez Piñeiro et al. (NTNU-MIT)

IFAC World Congress 2020

July 11-17, 2020 21 / 23

3 Application: Continuous-Flow Synthesis of Atropine

э

< □ > < 同 > < 回 > < 回 > < 回 >

• Self-optimizing control is a simple policy for near-optimal control of steady-state systems under uncertainty

э

< □ > < 同 > < 回 > < 回 > < 回 >

- Self-optimizing control is a simple policy for near-optimal control of steady-state systems under uncertainty
- Problem reformulation for selecting subsets of measurements

- Self-optimizing control is a simple policy for near-optimal control of steady-state systems under uncertainty
- Problem reformulation for selecting subsets of measurements
- Applied to a continuous pharmaceutical manufacturing plant under
 - Parametric model uncertainty
 - Process disturbances
 - Sensor noise

Acknowledgements

• Funding Sources

Braatz Group at MIT

Image: A (1)

July 11-17, 2020 23 / 23

э